Relationship between Structure of Benzimidazole Derivatives and Selective Virus Inhibitory Activity

نویسندگان

  • Igor Tamm
  • Rostom Bablanian
  • Marjorie M. Nemes
  • Clifford H. Shunk
  • Franklin M. Robinson
  • Karl Folkers
چکیده

The virus inhibitory activity and selectivity of certain benzimidazole, benzotriazole, and naphthimidazole derivatives were determined with influenza B and polio type 2 viruses. Among the sixty-five compounds examined, several were highly active inhibitors of influenza B virus multiplication in the chorioallantoic membrane in vitro. The following compounds, listed in order of increasing inhibitory activity, were more than 100 times as active as benzimidazole: 5-(4'-toluenesulfonamido)-benzimidazole, 5-hydroxybenzotriazole-4-carboxy-alpha-naphthylamide, 4,5,6-trichlorobenzotriazole, 5-(3',4'-dichlorobenzenesulfonamido)-benzimidazole, 5-(3',4'-dichlorobenzenesulfonamido) - 1 - (3'',4'' - dichlorobenzenesulfonyl)-benzimidazole, 4-(p-chlorophenylazo)-5-hydroxybenzotriazole, and 4,5,6,7-tetrachlorobenzotriazole. However, none showed high selectivity. Of the sixty-five compounds studied with influenza virus, twenty-five were also examined with poliovirus type 2 in monkey kidney cells in vitro. Included in this group were five of the seven most active inhibitors of influenza virus, listed above. All five were more than 100 times as active in inhibiting poliovirus multiplication as the reference compound. In addition to these, two other compounds were highly active: 2-(alpha-hydroxybenzyl)-benzimidazole (HBB), and 2-(alpha-hydroxybenzyl)-5-chlorobenzimidazole, with relative inhibitory activities of 78 and 130, respectively. These two compounds, and the much less active 5,6-dichloro derivative of HBB, were the only ones which showed no, or only slight, toxic effects on cells at concentrations sufficient to cause considerable inhibition of poliovirus multiplication. Furthermore, HBB and the 5-chloro derivative were the only compounds which caused significant inhibition of the cytopathic effects of poliovirus. HBB, and its 5-chloro and 5,6-dichloro derivatives had no effect on the multiplication of influenza B virus in the chorioallantoic membrane. In addition, HBB failed to inhibit influenza B virus multiplication and cytopathic effects in monkey kidney cells. Inhibition of poliovirus-induced cell damage by HBB was characterized by the following features: the curves relating reduction in virus yield or cytopathic effects to concentration of the compound followed an approximately parallel course; somewhat higher concentrations were required to inhibit virus-induced cell damage than to reduce virus yield. HBB suppressed viral cytopathic effects for a period of time which varied directly with the concentration of compound, and inversely with the size of virus inoculum. The development of virus-induced cell damage in treated cultures on prolonged incubation was not due to inactivation of HBB. The inhibitory effect of HBB on virus-induced cell damage was reversible by removal of the compound. HBB inhibited viral cytopathic effects when given during the exponential increase phase in virus multiplication. Inhibition of virus-induced cell damage by HBB was demonstrated by photomicrographs. HBB did not inactivate the infectivity of poliovirus type 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

Relationship between Inhibitory Activity and Chemical Structure

When it was found tha t 2,5-dimethylbenzimidazole inhibits the multiplication of influenza viruses (1-3), a systematic investigation of other alkyl derivatives of benzimidazole was undertaken. I t seemed probable tha t studies on the relationship between the chemical structure of such derivatives and their inhibitory act ivi ty relative to influenza virus multiplication would yield information ...

متن کامل

Selective chemical inhibition of influenza B virus multiplication.

Analysis of structure-activity relationships in the inhibition of influenza B vir'us multiplication by benzimidazoles has led to the synthesis of new derivatives (Tamm et al., 1956) having 1,000 times the activity of compounds first studied (Tamm et al., 1952; Tamm et al., 1953c). A considerable difference in selectivity of action between 2, 5-dimethylbenzimidazole (MB) and 5, 6 dichloro 1 -/3D...

متن کامل

Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were...

متن کامل

Designing and Synthesis of Novel Celecoxib Derivatives with Aminosulfonylmethyl and Azidomethyl Substituents as Selective Cyclooxygenase-2 Inhibitors

Introduction: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are used in treating pathologic conditions such as fever, pain and inflammation by inhibiting cyclooxygenase and consequently prostaglandin production. Recently , the discovery of different isoforms of this enzyme, Cyclooxygenase-1 (COX-1) andCyclooxygense-2 (COX-2), has led to the synthesis and introduction of novel drugs with select...

متن کامل

Designing and Synthesis of Novel Celecoxib Derivatives with Aminosulfonylmethyl and Azidomethyl Substituents as Selective Cyclooxygenase-2 Inhibitors

Introduction: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are used in treating pathologic conditions such as fever, pain and inflammation by inhibiting cyclooxygenase and consequently prostaglandin production. Recently , the discovery of different isoforms of this enzyme, Cyclooxygenase-1 (COX-1) and Cyclooxygense-2 (COX-2), has led to the synthesis and introduction of novel drugs with selec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 113  شماره 

صفحات  -

تاریخ انتشار 1961